Abstract

The movement of Samanea saman (Jacq.) Merrill leaflets is a consequence of the re-distribution of K(+) and anions between motor cells on opposite sides of the pulvinus. We used a K(+)-sensitive microelectrode to study dynamic changes in K(+) transport through motor-cell membranes during and immediately after change in illumination. Potassium-ion-sensitive and reference microelectrodes were inserted into extensor or flexor tissue of a whole pulvinus in white light (WL). A brief pulse of red light (RL) followed by darkness (D) (a) increased K(+) activity in the extensor apoplast, indicating K(+) release by the protoplast; and (b) decreased K(+) activity in the flexor apoplast, indicating K(+) uptake by the protoplast. White light after 35-40 min D reversed K(+) activity in the extensor apoplast to approximately its original value. Blue light substituted partially for WL in this regard. Potassium-ion activity in the flexor apoplast reverted to approximately its original value after 2 h, with or without white illumination. Our data support the hypothesis that K(+) efflux from extensor cells and K(+) uptake by flexor cells following a WL→RL→D transition occurs by way of K(+) channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.