Abstract

Photoacclimation in the marine eustigmatophyte Nannochlropsis sp., used extensively as a food chaincomponent in aquaculture, was studied both in thelaboratory and outdoors. Cell-chlorophyll andcarotenoids were used as markers to assessphotoacclimation to strong light, as well as todecreasing growth irradiance due to cellproliferation. Focusing on practical aspects involvedin mass cultivation, three different approaches wereused as follows: (a) cultures initially exposed to lowlight (150 μmol photon m-2 s-1) thentransferred to strong light (1000 to 3000 μmolphoton m-2 s-1); (b) initially low celldensity cultures grown in reactors of differentlight-paths, exposed to strong PFD, in the laboratoryand outdoors; (c) initially low or high cell densitycultures exposed to strong light. As has already beenestablished in many reports, cell-chlorophyllrepresented a sensitive parameter in assessing cellresponse to changes in the intensity of the lightsource as well as to modifications in the light regimeto which the cells were exposed. Cell-chlorophyllconcentration sharply decreased initially upontransferring the culture from low PFD cell-1 tohigh PFD cell-1 due to either culture dilution(i.e. decrease in cell density and mutual shading) orto an increase in PFD. After some 7 days ofphotoacclimating to 2000 and 3000 μmol photonm-2 s-1, chlorophyll a content began to riseat a much faster rate than cell number, which alsoincreased in response to the higher irradiance.Cell-chlorophyll in the culture exposed to 2000μmol photon m-2 s-1 increased afteracclimation earlier and at a faster rate than in theculture exposed to 3000 μmol photon m-2s-1, indicating the later irradiance affected astronger stress. The length of the reactor's lightpath exerted a decisive effect on cell response tostrong light through its influence on the light regimein the culture. Upon a sharp increase in PFD,carotenoids in the 1-cm reactor increased in muchhigher rate than chlorophyll, compared with the 3-cmlight path reactors. This marked difference in cellresponse to a shift-up in light was attributed to thevast variations in the light regime associated withdifferences in the length of the light path and areal density. Growth oflow cell density cultures ceased temporarily upontransfer to strong light, in contrast with high celldensity cultures transferred to strong light, whichcontinued growth without a lag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call