Abstract
We propose a miniaturized single-beam optically pumped magnetometer (OPM) with a laser power differential structure, along with a dynamically-adjusted detection circuit. This design enables the suppression of optical fluctuation noise and the enhancement of magnetometer sensitivity. For a single-beam OPM, pump light fluctuation noise is a significant contributor to output noise. To address this, we propose an OPM with a laser differential structure that separates the pump light as a part of the reference signal before it enters the cell. The reference current and OPM output current are then subtracted to suppress the noise introduced by pump light fluctuations. To achieve optimal optical noise suppression, we implement balanced homodyne detection (BHD) with real-time current adjustment, which dynamically adjusts the reference ratio between the two currents according to their amplitude. Ultimately, we can reduce the noise introduced by pump light fluctuations by 47% of the original. The OPM with laser power differential achieves a sensitivity of 17.5 fT/Hz1/2, with the optical fluctuation equivalent noise at 13 fT/Hz1/2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.