Abstract

Since the emergence of 2D magnets in 2017, the diversity of these materials has greatly expanded. Their 2D nature (atomic-scale thickness) endows these magnets with strong magnetic anisotropy, layer-dependent and switchable magnetic order, and quantum-confined quasiparticles, which distinguish them from conventional 3D magnetic materials. Moreover, the 2D geometry facilitates light incidence for opto-spintronic applications and potential on-chip integration. In analogy to optoelectronics based on optical-electronic interactions, opto-spintronics use light-spin interactions to process spin information stored in the solid state. In this review, opto-spintronics is divided into three types with respect to the wavelengths of radiation interacting with 2D magnets: 1) GHz (microwave) to THz (mid-infrared), 2) visible, and 3) UV to X-rays. It is focused on the recent research advancements on the newly discovered mechanisms of light-spin interactions in 2D magnets and introduces the potential design of novel opto-spintronic applications based on these interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.