Abstract

AbstractA theoretical study is presented to investigate lightning strikes to towers, with focus on wave interactions occurring at the return‐stroke front due to the arrival of current pulses that propagate upward on the channel after being transmitted from the tower. The lightning channel is represented as a transmission line including corona and nonlinear losses. Analyses for the hypothetical case of a lossless channel considering matched tower and channel impedances show that the arrival of current pulses at the upward moving return‐stroke front leads to an increase in corona currents leaving the channel. This transient process generates current pulses whose arrival at the tower top can be interpreted as the effect of a current reflection at the upward moving front, even though no impedance discontinuity exists at that point if return‐stroke and leader channel properties are assumed the same. In the more realistic case of a lossy channel considering unmatched channel and tower impedances, the nonlinear channel resistance modifies the current pulses that propagate along the channel so that they merge smoothly with the return‐stroke front. In this case, the interaction of the current pulses transmitted from the tower to the channel with the upward moving return‐stroke front does not lead to features that can be clearly interpreted as the result of current reflections at that point in the evaluated conditions. Finally, it is argued that the current reflection coefficient at the tower top should be viewed as a current dependent parameter as opposed to a constant, linear value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call