Abstract

AbstractOn 15 January 2022, Hunga Volcano in Tonga produced the most violent eruption in the modern satellite era, sending a water‐rich plume at least 58 km high. Using a combination of satellite‐ and ground‐based sensors, we investigate the astonishing rate of volcanic lightning (>2,600 flashes min−1) and what it reveals about the dynamics of the submarine eruption. In map view, lightning locations form radially expanding rings. We show that the initial lightning ring is co‐located with an internal gravity wave traveling >80 m s−1 in the stratospheric umbrella cloud. Buoyant oscillations of the plume's overshooting top generated the gravity waves, which enhanced turbulent particle interactions and triggered high‐current electrical discharges at unusually high altitudes. Our analysis attributes the intense lightning activity to an exceptional mass eruption rate (>5 × 109 kg s−1), rapidly expanding umbrella cloud, and entrainment of abundant seawater vaporized from magma‐water interaction at the submarine vent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.