Abstract

Abstract. This paper describes lightning characteristics as obtained in four sets of lightning measurements during recent field campaigns in different parts of the world from mid-latitudes to the tropics by the novel VLF/LF (very low frequency/low frequency) lightning detection network (LINET). The paper gives a general overview on the approach, and a synopsis of the statistical results for the observation periods as a whole and for one special day in each region. The focus is on the characteristics of lightning which can specifically be observed by this system like intra-cloud and cloud-to-ground stroke statistics, vertical distributions of intra-cloud strokes or peak current distributions. Some conclusions regarding lightning produced NOx are also presented as this was one of the aims of the tropical field campaigns TROCCINOX (Tropical Convection, Cirrus and Nitrogen Oxides Experiment) and TroCCiBras (Tropical Convection and Cirrus Experiment Brazil) in Brazil during January/February 2005, SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) and TWP-ICE (Tropical Warm Pool-International Cloud Experiment) during November/December 2005 and January/February 2006, respectively, in the Darwin area in N-Australia, and of AMMA (African Monsoon Multidisciplinary Analyses) in W-Africa during June–November 2006. Regional and temporal characteristics of lightning are found to be dependent on orographic effects (e.g. S-Germany, Brazil, Benin), land-sea breeze circulations (N-Australia) and especially the evolution of the monsoons (Benin, N-Australia). Large intra-seasonal variability in lightning occurrence was found for the Australian monsoon between the strong convection during build-up and break phases and the weak active monsoon phase with only minor lightning activity. Total daily lightning stroke rates can be of comparable intensity in all regions with the heaviest events found in Germany and N-Australia. The frequency of occurrence of such days was by far the largest in N-Australia. In accordance with radar observed storm structures, the intra-cloud stroke mean emission heights were found distinctly different in Germany (8 km) as compared to the tropics (up to 12 km in N-Australia). The fraction of intra-cloud strokes (compared to all strokes) was found to be relatively high in Brazil and Australia (0.83 and 0.82, respectively) as compared to Benin and Germany (0.64 and 0.69, respectively). Using stroke peak currents and vertical location information, lightning NOx (LNOx) production under defined standard conditions can be compared for the different areas of observation. LNOx production per standard stroke was found to be most efficient for the N-Australian and S-German thunderstorms whereas the yield from Brazilian and W-African strokes was nearly 40% less. On the other hand, the main NO contribution in Brazil was from intra-cloud (IC) strokes whereas in Benin it was due to cloud-to-ground (CG) components. For the German and Australian strokes both stroke types contributed similar amounts to the total NO outcome.

Highlights

  • In recent years lightning has come into the focus of scientific interest because it is one form of severe weather associated with thunderstorms and because of its role in atmospheric chemistry

  • A comparison of airborne chemical measurements, spaceborne observations from the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) lightning record statistics (Christian et al, 2003; Mach et al, 2007), and lightning detection network (LINET) lightning detection during the second field campaign in 2005 revealed scaling factors relating the local lightning observations to the annual global lightning NOx production rate (Huntrieser et al, 2008) which could be assessed to amount from 1.6 Tg (N) a−1 for deep convection of tropical type up to 3.1 Tg (N) a−1 for a sub-tropical thunderstorm assumed as globally representative storm prototypes

  • The present paper presents an overview of the lightning measurements obtained by the novel VLF lightning detection network LINET which have been performed recently in various parts of the world

Read more

Summary

Introduction

In recent years lightning has come into the focus of scientific interest because it is one form of severe weather associated with thunderstorms and because of its role in atmospheric chemistry. A comparison of airborne chemical measurements, spaceborne observations from the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) lightning record statistics (Christian et al, 2003; Mach et al, 2007), and LINET lightning detection during the second field campaign in 2005 revealed scaling factors relating the local lightning observations to the annual global lightning NOx production rate (Huntrieser et al, 2008) which could be assessed to amount from 1.6 Tg (N) a−1 for deep convection of tropical type up to 3.1 Tg (N) a−1 for a sub-tropical thunderstorm assumed as globally representative storm prototypes. When comparing data from the same measuring system for different regions there is no need to look at flashes as long as we do not intend to compare to outputs from other lightning detection sensors providing different properties of lighting (like VHF or optical detection) In the latter case a flash definition might be helpful as common base for interpretation.

The TROCCINOX network in Brazil
The network in S-Germany 2005
General characteristics
Stroke characteristics and conceptual model
Implications for lightning NOx production
Findings
Summary and conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.