Abstract

The self-consistent leader inception and propagation model is used to analyze the influence of the phase voltage on the attachment of lightning to ultra-high voltage power transmission lines (UHV-TLs). An UHV-ac line with shielding failures reported in the literature is used as a case study. It is shown that the length of upward leaders initiated from conductors and their striking distances are longer under positive voltages than when energized with the opposite polarity. Therefore, the fraction of shielding failures of each conductor changes significantly with the phase angle in ac lines. However, it is found that the overall effect of voltage on lightning attachment can also be limited by the electrostatic screening produced by shield wires and their leaders. This proximity effect mainly reduces the velocity of upward leaders launched from energized conductors. Therefore, the effect of voltage on the lightning attachment process cannot be generalized since it is strongly coupled to the proximity of shield wires and their associated leaders. Thus, the lightning shielding performance should consider case-to-case variations in the upward leader velocity in different UHV-TLs designs, given not only by the line voltage but also coupled to the proximity of other wires and their launched leaders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call