Abstract

AbstractA supercell thunderstorm formed as part of a cluster of severe storms near Kingfisher, Oklahoma on May 29, 2012 during the Deep Convective Clouds and Chemistry field experiment. This storm produced 5 hail, an EF‐1 tornado, and copious lightning over the course of a few hours within range of the Oklahoma Lightning Mapping Array and the KTLX WSR‐88D radar. This study focuses on a ∼1‐h interval during which a line of secondary convection formed and intensified within the anvil of the Kingfisher supercell. An analysis of radar reflectivity, radial velocity, and low‐level divergence shows that the formation of the secondary convection was consistent with a previously proposed mechanism; the instability leading to the convection was initiated by diabatic cooling in dry air below the anvil from sublimation, melting and evaporation of virga falling from the anvil, coincident with weak rising motion above a surface outflow boundary adjacent to the sub‐anvil downdraft. Prior to the formation of the secondary convection, flashes extended up to 60 km from the deep convection into the anvil. After the line of secondary convection formed, it initiated long lightning flashes that propagated along the line, and it continued to produce lightning as it moved eastward out from under the anvil. The charge structure inferred from flashes in the parent storm and in the downstream anvil suggests that charge was separated locally in the anvil following the development of an outflow boundary by the Kingfisher storm, which also contributed to the initiation of the secondary convection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call