Abstract

To estimate intrinsic descriptors of objects in the environment, effective biological vision systems must 'discount' extrinsic image properties that arise from changes in viewing conditions. In particular, to estimate the reflectance of surfaces, human vision must discount, or 'take account of', likely differences in the illumination of surfaces between one image region and another. If human vision possesses any significant degree of lightness constancy, then we would expect a target perceived to be in low illumination to appear lighter than an identical target perceived to be in higher illumination. In this paper, I present lightness illusions that run directly counter to this expectation. I suggest that mid-level and higher-level factors such as image junction structure and perceived illumination and transparency, are ineffective for generating strong lightness illusions on their own, and that these factors are not 'stronger' than luminance contrast in determining lightness. I discuss the implications of these results for current models of lightness perception. I also suggest a statistical justification for the highest-luminance anchoring rule for lightness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call