Abstract

We propose LightNE, a cost-effective, scalable, and high quality network embedding system that scales to graphs with hundreds of billions of edges on a single machine. In contrast to the mainstream belief that distributed architecture and GPUs are needed for large-scale network embedding with good quality, we prove that we can achieve higher quality, better scalability, lower cost and faster runtime with shared-memory, CPU-only architecture. LightNE combines two theoretically grounded embedding methods NetSMF and ProNE. We introduce the following techniques to network embedding for the first time: (1) a newly proposed downsampling method to reduce the sample complexity of NetSMF while preserving its theoretical advantages; (2) a high-performance parallel graph processing stack GBBS to achieve high memory efficiency and scalability; (3) sparse parallel hash table to aggregate and maintain the matrix sparsifier in memory; and (4) Intel MKL for efficient randomized SVD and spectral propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.