Abstract

For the precision resection, development of near-infrared (NIR) fluorescent probe based on specificity identification tumor-associated enzyme for lighting-up the tumor area, is urgent in the field of diagnosis and treatment. Overexpression of γ-glutamyltranspeptidase, one of the cell-membrane enzymes, known as a biomarker is concerned with the growth and progression of ovarian, liver, colon and breast cancer compared to normal tissue. In this work, a remarkable enzyme-activated NIR fluorescent probe NIR-SN-GGT was proposed and synthesized including two moieties: a NIR dicyanoisophorone core as signal reporter unit; γ-glutamyl group as the specificity identification site. In the presence of γ-GGT, probe NIR-SN-GGT was transformed into NIR-SN-NH2, the recovery of Intramolecular Charge Transfer (ICT), liberating the NIR fluorescence signal, which was firstly employed to distinguish tumor tissue and normal tissues via simple “spraying” manner, greatly promoting the possibility of precise excision. Furthermore, combined with magnetic resonance imaging by T2 weight mode, tumor transplanted BABL/c mice could be also lit up for first time by NIR fluorescence probe having a large stokes, which demonstrated that probe NIR-SN-GGT would be a useful tool for assisting surgeon to diagnose and remove tumor in clinical practice.

Highlights

  • With the improvement of economic level, diagnose and treatment of cancer is getting more and more attention (Cheng et al, 2011; Chen et al, 2016, 2018; Cong et al, 2018; Jung et al, 2018; Lee et al, 2018; Yang et al, 2018; Zhang et al, 2018)

  • NIR fluorescence signal of around 650 nm was observed through the modulation of Intermolecular Charge Transfer (ICT), where the recognition procedure of probe NIR-SN-GGT for target was shown in Scheme 2

  • To our satisfaction, probe NIR-SN-GGT was used to the identification tumor transplanted in BABL/c mice and deep tissue accompanied by magnetic resonance imaging (MRI) imaging, which would be in favor of early diagnosis and treatment of tumor in clinical practice

Read more

Summary

INTRODUCTION

With the improvement of economic level, diagnose and treatment of cancer is getting more and more attention (Cheng et al, 2011; Chen et al, 2016, 2018; Cong et al, 2018; Jung et al, 2018; Lee et al, 2018; Yang et al, 2018; Zhang et al, 2018). The crude product was purified through silica gel column chromatography to obtain 23 mg bright red probe NIR-SN-GGT (yield 54%)0.1H NMR (400 MHz, MeOD/TFA, 0.60 mL/0.05 mL) δ 7.62 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 16.1 Hz, 1H), 7.07 (d, J = 16.1 Hz, 1H), 6.81 (s, 1H), 4.07 (t, J = 6.5 Hz, 1H), 2.71 (t, J = 7.0 Hz, 2H), 2.60 (s, 2H), 2.53 (s, 2H), 2.27 (m, 2H), 1.06. ESI-HRMS: m/z calculated for C24H27N4O+3 [M+H]+: 419.2078, found: 419.2074

RESULTS AND DISCUSSION
CONCLUSION
ETHICS STATEMENT

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.