Abstract

In the retinal pigment epithelium (RPE) of lower vertebrates, melanin pigment granules migrate in and out of the cells' long apical projections in response to changes in light condition. When the RPE is in its normal association with the retina, light onset induces pigment granules to disperse into the apical projections; dark onset induces pigment granules to aggregate into the cell bodies. However, when the RPE is separated from the retina, pigment granule movement in the isolated RPE is insensitive to light onset. It thus seems likely that a signal from the retina communicates light onset to the RPE to initiate pigment dispersion. We have examined the nature of this retina-to-RPE signal in green sunfish, Lepomis cyanellus. In isolated retinas with adherent RPE, light-induced pigment dispersion in the RPE is blocked by treatments known to block Ca2+-dependent transmitter release in the retina. In addition, the medium obtained from incubating previously dark-adapted retinas in the light induces light-adaptive pigment dispersion when added to isolated RPE. In contrast, the medium obtained from incubating dark-adapted retinas in constant darkness does not affect pigment distribution when added to isolated RPE. These results are consistent with the idea that RPE pigment dispersion is triggered by a substance that diffuses from the retina at light onset. The capacity of the conditioned medium from light-incubated retinas to induce pigment dispersion in isolated RPE is inhibited by a D2 dopamine antagonist, but not by D1 or alpha-adrenergic antagonists. Light-induced pigment dispersion in whole RPE-retinas is also blocked by a D2 dopamine antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.