Abstract

The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and revealed the unexpected absence of any stars rotating near the break-up limit. The resulting `braking problem' is now a major concern for theorists, particularly given the possible role of gravitational wave emission in limiting spin. This, however, is not the only area where burst oscillations from the AMPs are having an impact. Burst oscillation timing is developing into a promising technique for verifying the level of spin variability in the AMPs (a topic of considerable debate). These sources also provide unique input to our efforts to understand the still-elusive burst oscillation mechanism. This is because they are the only stars where we can reliably gauge the role of uneven fuel deposition and, of course, the magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call