Abstract

Photosynthetic organisms have evolved diverse light-harvesting complexes to harness light of various qualities and intensities. Photosynthetic bacteria can have (bacterio)chlorophyll Q(y) antenna absorption bands ranging from approximately 650 to approximately 1100 nm. This broad range of wavelengths has allowed many organisms to thrive in unique light environments. Roseiflexus castenholzii is a niche-adapted, filamentous anoxygenic phototroph (FAP) that lacks chlorosomes, the dominant antenna found in most green bacteria, and here we describe the purification of a full complement of photosynthetic complexes: the light-harvesting (LH) antenna, reaction center (RC), and core complex (RC-LH). By high-performance liquid chromatography separation of bacteriochlorophyll and bacteriopheophytin pigments extracted from the core complex and the RC, the number of subunits that comprise the antenna was determined to be 15 +/- 1. Resonance Raman spectroscopy of the carbonyl stretching region displayed modes indicating that 3C-acetyl groups of BChl a are all involved in molecular interactions probably similar to those found in LH1 complexes from purple photosynthetic bacteria. Finally, two-dimensional projections of negatively stained core complexes and the LH antenna revealed a closed, slightly elliptical LH ring with an average diameter of 130 +/- 10 A surrounding a single RC that lacks an H-subunit but is associated with a tetraheme c-type cytochrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call