Abstract

Two topics are presented. The first one is a novel approach for a Poincare' covariant description of nuclear dynamics based on light-front Hamiltonian dynamics. The key quantity is the light-front spectral function, where both normalization and momentum sum rule can be satisfied at the same time. Preliminary results are discussed for an initial analysis of the role of relativity in the EMC effect in 3He. A second issue, very challenging, is considered in a non-relativistic framework, namely a distorted spin-dependent spectral function for 3He in order to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off polarized 3He. The generalization of the analysis within the light-front dynamics is outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.