Abstract
Correlation plenoptic imaging (CPI) is a light-field imaging technique employing intensity correlation measurements to simultaneously detect the spatial distribution and the propagation direction of light. Compared to standard methods, in which light-field images are directly encoded in intensity, CPI provides a significant enhancement of the volumetric reconstruction performance in terms of both achievable depth of field and 3D resolution. In this article, we present a novel CPI configuration where light-field information is encoded in correlations between position and momentum measurements, namely, points on a given object plane and points of the Fourier plane of the imaging lens. Besides the fundamental interest in retrieving the properties of position-momentum correlation, the proposed scheme overcomes practical limitations of previously proposed setups, providing higher axial homogeneity and robustness with respect to the identification of reference planes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.