Abstract

AbstractAs the lightest metal, the reversible insertion/extraction properties of lithium have been key findings in lithium metal oxide chemistry. Lithium has been widely used in the oxygen evolution reaction (OER), and the reaction mechanism of lithium‐mediated metal oxides has both similarities and uniqueness compared to typical dual metal oxides. Notably, the insertion/extraction of lithium during the OER is also crucial for the construction of novel surface reconstruction models. This review aims to provide the concepts of general OER pathways and key features of dual metal oxides for the OER. As a comparison then the development of lithium metal oxides for the OER is introduced and the chemistry underlying lithium metal oxide catalysts is unveiled. This review also examines the challenges remaining for the relevant catalysts, with prospects for further improving their OER activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.