Abstract
The presence of short-lived radionuclides in the early solar system provides important information about the astrophysical environment in which the solar system formed. The discovery of now extinct $^{10}$Be in calcium-aluminum-rich inclusions (CAIs) with Fractionation and Unidentified Nuclear isotope anomalies (FUN-CAIs) suggests that a baseline concentration of $^{10}$Be in the early solar system was inherited from the protosolar molecular cloud. In this paper, we first show that the $^{10}$Be recorded in FUN-CAIs cannot have been produced in situ by cosmic-ray (CR) irradiation of the FUN-CAIs themselves. We then show that trapping of Galactic CRs (GCRs) in the collapsing presolar cloud core induced a negligible $^{10}$Be contamination of the protosolar nebula. Irradiation of the presolar molecular cloud by background GCRs produced a steady-state $^{10}$Be/$^9$Be ratio ~2.3 times lower than the ratio recorded in FUN-CAIs, which suggests that the presolar cloud was irradiated by an additional source of CRs. Considering a detailed model for CR acceleration in a supernova remnant (SNR), we find that the $^{10}$Be abundance recorded in FUN-CAIs can be explained within two alternative scenarios: (i) the irradiation of a giant molecular cloud by CRs produced by >50 supernovae exploding in a superbubble of hot gas generated by a large star cluster of at least 20,000 members and (ii) the irradiation of the presolar molecular cloud by freshly accelerated CRs escaped from an isolated SNR at the end of the Sedov-Taylor phase. The second model naturally provides an explanation for the injection of other short-lived radionuclides of stellar origin into the cold presolar molecular cloud ($^{26}$Al, $^{41}$Ca and $^{36}$Cl) and is in agreement with the solar system originating from the collapse of a molecular cloud shocked by a supernova blast wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.