Abstract
Effective skin cancer detection is crucial for early intervention and improved treatment outcomes. Previous studies have primarily focused on enhancing the performance of skin lesion classification models. However, there is a growing need to consider the practical requirements of real-world scenarios, such as portable applications that require lightweight models embedded in devices. Therefore, this study aims to propose a novel method that can address the major-type misclassification problem with a lightweight model. This study proposes an innovative Lightweight Dual Projection-Head Hierarchical contrastive learning (LightDPH) method. We introduce a dual projection-head mechanism to a contrastive learning framework. This mechanism is utilized to train a model with our proposed multi-level contrastive loss (MultiCon Loss), which can effectively learn hierarchical information from samples. Meanwhile, we present a distance-based weight (DBW) function to adjust losses based on hierarchical levels. This unique combination of MultiCon Loss and DBW function in LightDPH tackles the problem of major-type misclassification with lightweight models and enhances the model’s sensitivity in skin lesion classification. The experimental results demonstrate that LightDPH significantly reduces the number of parameters by 52.6% and computational complexity by 29.9% in GFLOPs while maintaining high classification performance comparable to state-of-the-art methods. This study also presented a novel evaluation metric, model efficiency score (MES), to evaluate the cost-effectiveness of models with scaling and classification performance. The proposed LightDPH effectively mitigates major-type misclassification and works in a resource-efficient manner, making it highly suitable for clinical applications in resource-constrained environments. To the best of our knowledge, this is the first work that develops an effective lightweight hierarchical classification model for skin lesion detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.