Abstract

Light has been used to induce photochemical changes in the surface chemistry of porous polymer microstructures giving rise to a substantial change in volume. When illumination is asymmetric, this results in light-directed motion of the structure. Swellable trimethylolpropane trimethacrylate cross-linked poly(2-hydroxylethyl methacrylate) microstructures were constructed by azo-bis-isobutyronitrile photopolymerization using a 20 x 0.5 NA microscope objective and 365 nm laser excitation. Structures were aminiated with glycine and protected with the photolabile group 4-nitroveratryloxycarbanyl (NVOC). Addition of NVOC resulted in a volume increase >10% when performed in the solvent N,N'-dimethylformamide. Photochemical cleavage of NVOC using asymmetric illumination of a cone-shaped microstructure with a 365 nm laser induced polymer shrinkage in excess of 4% at the base of the cone and resulted in a maximum velocity of 1 mm/s at the tip of the cone. Symmetric illumination gave rise to displacement of solvent from the microstructure due to shrinkage with a velocity in excess of 0.01 mm/s. This system could in principle be used for light-directed movement of micromechanical systems, optical control of microfluidics, or light activated chemical delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.