Abstract

Basso-Dixon integrals evaluate rectangular fishnets — Feynman graphs with massless scalar propagators which form a m × n rectangular grid — which arise in certain one-trace four-point correlators in the ‘fishnet’ limit of mathcal{N} = 4 SYM. Recently, Basso et al. explored the thermodynamical limit m → ∞ with fixed aspect ratio n/m of a rectangular fishnet and showed that in general the dependence on the coordinates of the four operators is erased, but it reappears in a scaling limit with two of the operators getting close in a controlled way. In this note I investigate the most general double scaling limit which describes the thermodynamics when one of two pairs of operators become nearly light-like. In this double scaling limit, the rectangular fishnet depends on both coordinate cross ratios. I show that all singular limits of the fishnet can be attained within the double scaling limit, including the null limit with the four points approaching the cusps of a null square. A direct evaluation of the fishnet in the null limit is presented any m and n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.