Abstract

Light-absorbing impurities on glaciers are important factors that influence glacial surface albedo and accelerate glacier melt. In this study, the quantity of light-absorbing impurities on Keqikaer Glacier in western Tien Shan, Central Asia, was measured. We found that the average concentrations of black carbon was 2,180 ng/g, with a range from 250 ng/g to more than 10,000 ng/g. The average concentrations of organic carbon and mineral dust were 1,738 ng/g and 194 μg/g, respectively. Based on simulations performed with the Snow Ice Aerosol Radiative model simulations, black carbon and dust are responsible for approximately 64% and 9%, respectively, of the albedo reduction, and are associated with instantaneous radiative forcing of 323.18 W/m 2 (ranging from 142.16 to 619.25 W/m 2 ) and 24.05 W/m 2 (ranging from 0.15 to 69.77 W/m 2 ), respectively. For different scenarios, the albedo and radiative forcing effect of black carbon is considerably greater than that of dust. The estimated radiative forcing at Keqikaer Glacier is higher than most similar values estimated by previous studies on the Tibetan Plateau, perhaps as a result of black carbon enrichment by melt scavenging. Light-absorbing impurities deposited on Keqikaer Glacier appear to mainly originate from central Asia, Siberia, western China (including the Taklimakan Desert) and parts of South Asia in summer, and from the Middle East and Central Asia in winter. A footprint analysis indicates that a large fraction (>60%) of the black carbon contributions on Keqikaer Glacier comes from anthropogenic sources. These results provide a scientific basis for regional mitigation efforts to reduce black carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call