Abstract

A properly designed composite waveguide consisting of a one-dimensional photonic crystal waveguide and a conventional dielectric waveguide is proposed for the realization of a localized "light wheel". Light confinedly rotating between the two waveguides is numerically demonstrated and explained physically in detail. A delocalized "light wheel" is found at the band gap edge caused by contra-directional coupling between the two waveguides. Because of this delocalized "light wheel" , the composite waveguide can be used to trap light as a cavity, and a quality factor of 9 x 10(3) is achieved as an example. The present structure is completely dielectric and thus easy to realize with a low loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call