Abstract

Wearable devices can be potentially captured or accessed in an unauthorized manner because of their physical nature. In such cases, they are in white-box attack contexts, where the adversary may have total visibility on the implementation of the built-in cryptosystem, with full control over its execution platform. Dealing with white-box attacks on wearable devices is undoubtedly a challenge. To serve as a countermeasure against threats in such contexts, we propose a lightweight encryption scheme to protect the confidentiality of data against white-box attacks. We constructed the scheme’s encryption and decryption algorithms on a substitution-permutation network that consisted of random secret components. Moreover, the encryption algorithm uses random padding that does not need to be correctly decrypted as part of the input. This feature enables non-bijective linear transformations to be used in each encryption round to achieve strong security. The required storage for static data is relatively small and the algorithms perform well on various devices, which indicates that the proposed scheme satisfies the requirements of wearable computing in terms of limited memory and low computational power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.