Abstract

With the emergence of the Industrial Internet of Things (IIoT), potential threats to smart manufacturing systems are increasingly becoming challenging, causing severe damage to production operations and vital industrial assets, even sensitive information. Hence, detecting irregularities for time-series data in industrial control systems that should operate continually is critical, ensuring security and minimizing maintenance costs. In this study, with the hybrid design of Federated learning, Autoencoder, Transformer, and Fourier mixing sublayer, we propose a robust distributed anomaly detection architecture that works more accurately than several most recent anomaly detection solutions within the ICS contexts, whilst being fast learning in minute time scale. This distributed architecture is also proven to achieve lightweight, consume little CPU and memory usage, have low communication costs in terms of bandwidth consumption, which makes it feasible to be deployed on top of edge devices with limited computing capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.