Abstract

Recent research on the human visual system shows that our perception of object shape relies in part on compression and stretching of the reflected lighting environment onto its surface. We use this property to enhance the shape depiction of 3D objects by locally warping the environment lighting around main surface features. Contrary to previous work, which require specific illumination, material characteristics and/or stylization choices, our approach enhances surface shape without impairing the desired appearance. Thanks to our novel local shape descriptor, salient surface features are explicitly extracted in a view-dependent fashion at various scales without the need of any pre-process. We demonstrate our system on a variety of rendering settings, using object materials ranging from diffuse to glossy, to mirror or refractive, with direct or global illumination, and providing styles that range from photorealistic to non-photorealistic. The warping itself is very fast to compute on modern graphics hardware, enabling real-time performance in direct illumination scenarios. Note: Third-Party Material Attribution Third-party material used in ACM Transactions on Graphics 28(3), Article 25 - "Light Warping for Enhanced Surface Depiction," by Vergne, Pacanowski, Barla, Granier, and Schlick - was used without proper attribution. The 3D model used in Figures 1, 3, and 5, as well as in the cover image of this volume of the journal, was downloaded from the Shape Repository of AIM@SHAPE Project (http://shapes.aimatshape.net) and is the property of CNR-IMATI. We regret this oversight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.