Abstract

Prochlorococcus and Synechococcus picocyanobacteria are dominant contributors to marine primary production over large areas of the ocean. Phytoplankton cells are entrained in the water column and are thus often exposed to rapid changes in irradiance within the upper mixed layer of the ocean. An upward fluctuation in irradiance can result in photosystem II photoinactivation exceeding counteracting repair rates through protein turnover, thereby leading to net photoinhibition of primary productivity, and potentially cell death. Here we show that the effective cross-section for photosystem II photoinactivation is conserved across the picocyanobacteria, but that their photosystem II repair capacity and protein-specific photosystem II light capture are negatively correlated and vary widely across the strains. The differences in repair rate correspond to the light and nutrient conditions that characterize the site of origin of the Prochlorococcus and Synechococcus isolates, and determine the upward fluctuation in irradiance they can tolerate, indicating that photoinhibition due to transient high-light exposure influences their distribution in the ocean.

Highlights

  • The smallest category of free living photosynthetic cells is picophytoplankton, defined as less than 3 mm diameter

  • To determine if upward fluctuations in irradiance are an important selective factor in niche partitioning among marine picocyanobacteria, we quantitatively analyzed the relative capacities to tolerate a sudden increase in irradiance across five ecologically significant types of Synechococcus and Prochlorococcus isolated from habitats with contrasting dynamic irradiance regimes

  • The Synechococcus and Prochlorococcus cell types exhibited a gradient in their photophysiological tolerance of upward fluctuations in irradiance (Fig. 1), resulting from different capacities to induce repair (RPSII, functional photosystem II (PSII) gained s21) to counter the PSII photoinactivation rate (PSII lost s21)

Read more

Summary

Introduction

The smallest category of free living photosynthetic cells is picophytoplankton, defined as less than 3 mm diameter. To determine if upward fluctuations in irradiance are an important selective factor in niche partitioning among marine picocyanobacteria, we quantitatively analyzed the relative capacities to tolerate a sudden increase in irradiance across five ecologically significant types of Synechococcus and Prochlorococcus isolated from habitats with contrasting dynamic irradiance regimes.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call