Abstract

Viable pathogenic bacteria cause serious human diseases via systemic infections and food poisoning. Herein, we constructed a light-up RNA aptamer signaling-CRISPR-Cas13a assay enabling mix-and-read detection of viable pathogenic bacteria. Directly targeting pathogen RNAs via CRISPR-Cas13a allows precisely discriminating viable bacteria from dead bacteria. We introduced a light-up RNA aptamer, Broccoli, serving as the substate of activated CRISPR-Cas13a to monitor the presence of pathogen RNAs, eliminating the need to use chemically labeled RNA substrate. Sequentially, the assay allows a reverse transcription-free, nucleic acid amplification-free, and label-free quantification of RNA targets and viable pathogenic bacteria. It could detect as low as 10 CFU of Bacillus cereus and precisely quantify viable bacteria with a content ranging from 0% to 100% in 105 CFU total bacteria. The quantification of viable bacteria allows more accurately estimating the ability of B. cereus to spoil food. The RNA assay promises its use in point-of-use detection of viable pathogens and biosafety control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.