Abstract

Mixed iodine-bromine perovskites used in solar cells undergo below a critical temperature an intrinsic demixing into phases with different iodine-bromine compositions. In addition, under illumination they show nucleation of an iodine-rich phase. We predict from thermodynamic considerations that in mixed iodine-bromine perovskites like MAPb(I$_{1-x}$Br$_x$)$_3$ the interplay of these effects can lead to coexistence of a bromine-rich, iodine-rich, and nearly iodine-pure nucleated phase. This three-phase coexistence occurs in a region in the composition-temperature phase diagram near the critical point for intrinsic demixing. We investigate the hysteresis in the evolution of this coexistence when temperature or illumination intensity are cycled. Depending on the particular way the coexistence is established, nearly iodine-pure nuclei should form either in the iodine-rich phase only or both in the bromine-rich and iodine-rich phases. Experimental verification of this fundamentally novel type of light-tunable three-phase coexistence should be possible by a combination of absorption and photoluminescence experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.