Abstract

The recent discovery of intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) crystals has opened up a new arena for spintronics, raising an opportunity of achieving tunable intrinsic 2D vdW magnetism. Here, we show that the magnetization and the magnetic anisotropy energy (MAE) of few-layered Fe_{3}GeTe_{2} (FGT) is strongly modulated by a femtosecond laser pulse. Upon increasing the femtosecond laser excitation intensity, the saturation magnetization increases in an approximately linear way and the coercivity determined by the MAE decreases monotonically, showing unambiguously the effect of the laser pulse on magnetic ordering. This effect observed at room temperature reveals the emergence of light-driven room-temperature (300K) ferromagnetism in 2D vdW FGT, as its intrinsic Curie temperature T_{C} is ∼200 K. The light-tunable ferromagnetism is attributed to the changes in the electronic structure due to the optical doping effect. Our findings pave a novel way to optically tune 2D vdW magnetism and enhance the T_{C} up to room temperature, promoting spintronic applications at or above room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.