Abstract

Responsive photonic crystals (RPCs) assembled by monodisperse colloidal particles have attracted enormous interest recently due to their tremendous applications in smart devices. Their structural colors can be determined by particle sizes. However, the lack of a reliable way to tune the sizes in situ limits their development. Herein, we present an efficient route to solve this problem through the fabrication of spherical polymeric particles with light-triggered reversible swelling behavior via surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization-induced self-assembly (PISA). Amphiphilic macro-RAFT agents containing azobenzene groups were synthesized and subsequently employed to mediate the polymerization of methyl methacrylate. Uniform submicron spheres were obtained by modulating solid contents and other parameters. Benefiting from the photoisomerization of azobenzene moieties, the particle sizes expanded and contracted upon alternative ultraviolet/visible-light irradiation accordingly. This strategy will be a supplement to the emulsion PISA and especially give aid to the progress of the RPC materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.