Abstract

Complex optical systems such as deterministic aperiodic Mathieu lattices are known to hinder light diffraction in a manner comparable to randomized optical systems. We systematically incorporate randomness in our complex optical system, measuring its relative contribution of randomness, to understand the relationship between randomness and complexity. We introduce an experimental method for the realization of disordered aperiodic Mathieu lattices with numerically controlled disorder degree. Added disorder always enhances light transport. For lower disorder degrees, we observe diffusive-like transport, and in the range of highest light transport, we detect Anderson localization. With further increase of disorder degree, light transport is slowly decreasing and localization length decreases indicating more pronounced Anderson localization. Numerical investigation at longer propagation distances indicates that the threshold of Anderson localization detection is shifted to lower disorder degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call