Abstract

Cryogen spray cooling (CSC) is widely applied in laser dermatologic surgery to minimize the risk of non-specific epidermal thermal damage caused by the competitive laser energy absorption of epidermal melanin. However, the light absorption and attenuation by cryogen film and subsequent frost formation on the skin surface during CSC are needed to be investigated by using R-134a, R-404A, and R-32. A spray system equipped with an integrating sphere-based light collection apparatus was constructed to evaluate the time-resolved laser transmittance and spectral absorption characteristics induced by R-134a, R-404A, and R-32 sprays, under the clinical-used 755-nm and 1064-nm laser irradiations. No obvious light absorption peaks exist in the wavelengths of 370-1400nm. R-404A produces the largest average light absorbance (0.089), as compared to those of R-134a (0.066) and R-32 (0.068) in the near-infrared range (780-1400nm). Given the lowest boiling point and highest latent heat of R-32, the evaporation of liquid film and melting of subsequent frost are promoted, leading to smallest light attenuation. R-32 spray shows great potential in clinics owing to its high light transmittance, small light absorption, and high cooling capability. For R-32 spray, the durations between spurt termination and laser irradiation are recommended to be 8-100ms and 13-100ms with average light transmittances of 86% and 95% under 755-nm and 1064-nm laser irradiations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.