Abstract

Background and Objectives: One requirement for the cemented post is the light transmittance on its entire length up to the deepest portion of a root canal to ensure the complete polymerization of resin cement. This study aimed to determine the light transmission ability in different aesthetic posts at different depths and its effect on the push-out bond strength and microhardness of luting cement at the corresponding interface. Materials and Methods: Twenty endodontic posts from glass fiber posts (GFP), zirconia ceramic posts (ZCP), and highly translucent zirconium oxide posts (HTZP) were sequentially sectioned into 12.8 and 4 mm lengths after recording the light intensity using a dental radiometer. Sixty single rooted premolar teeth root canals were treated and implanted vertically in a resin block. The post space was prepared and cemented with GFP, ZCP, and HTZP posts with twenty samples each. The root portion of teeth samples were sectioned into cervical, middle, and apical portion. A universal testing machine was utilized for the push-out bond strength test for the first ten samples from each group. The remaining ten samples from each group were used for the microhardness test using a micro-indenter instrument. The data were statistically analyzed using one-way Analysis of variance and Tukey HSD tests at p < 0.05. Results: The GFP endodontic postpresented with significant highest light translucency compared to HTZP, which was significantly higher than ZCP. GFP posts showed significantly higher bond strength per unit area compared to ZCP at analogous cross sections. The hardness of luting cement was also significantly higher amongst all tested endodontic posts. Conclusions: GFP high light translucency enhanced the curing of the luting resin cement that resulted in harder cement and a stronger bond supported by hardness and push-out tests. These findings suggest that GFP is preferred to be used with light-cured luting cements for restoration of endodontically treated teeth.

Highlights

  • A contemporary society driven by social media has enhanced the demand for aesthetic treatments to improve physical appearance [1]

  • The highest light transmission intensities of 481(17.91), 391(15.23), and 309(8.75) mW/cm2 was observed in the glass fiber posts (GFP) post at experimental post lengths of 12, 8, and 4 mm

  • All zirconia ceramic posts (ZCP) samples with 12-mm length had light intensity lesser than 300 mW/cm2

Read more

Summary

Introduction

A contemporary society driven by social media has enhanced the demand for aesthetic treatments to improve physical appearance [1]. Materials and Methods: Twenty endodontic posts from glass fiber posts (GFP), zirconia ceramic posts (ZCP), and highly translucent zirconium oxide posts (HTZP) were sequentially sectioned into 12.8 and 4 mm lengths after recording the light intensity using a dental radiometer. Results: The GFP endodontic postpresented with significant highest light translucency compared to HTZP, which was significantly higher than ZCP. Conclusions: GFP high light translucency enhanced the curing of the luting resin cement that resulted in harder cement and a stronger bond supported by hardness and push-out tests. These findings suggest that GFP is preferred to be used with light-cured luting cements for restoration of endodontically treated teeth

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.