Abstract
A hybrid ZnO micro-mesh and nanorod arrays (MMNR) was fabricated as a light output window for GaN-based light-emitting diodes (LEDs) to enhance the light extraction efficiency. The light output power of GaN-based LEDs with the ZnO MMNR is improved by 95% compared to the original planar LEDs. The ZnO MMNR is manufactured by photolithography techniques and a two-step wet chemical growth process. The incident angle-resolved light transmission of the ZnO MMNR beyond the critical angle of total internal reflection is greatly enhanced. The light diffraction pattern of the ZnO MMNR shows that it possesses both the two-dimensional diffraction grating effect of a ZnO micro-mesh and the light scattering effect of a ZnO nanorod array. LEDs with the ZnO MMNR have greater light extraction efficiency than those with only a ZnO micro-mesh or a ZnO nanorod array. The local optical field patterns of the ZnO micro-mesh and the ZnO MMNR are investigated using confocal scanning electroluminescence microscopy. The microscopic light extraction mechanism of the ZnO MMNR is analyzed in-depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.