Abstract

We propose two non-Hermitian arrays consisting of N = 2l + 1 waveguides and exhibiting parity-time (P T) or anti-P T symmetry for investigating light transfer dynamics based on Nth-order exceptional points (EPs). The P T-symmetric array supports two Nth-order EPs separating an unbroken and a broken phase with real and imaginary eignvalues, respectively. Light transfer dynamics in this array exhibits radically different behaviors, i.e. a unidirectional oscillation behavior in the unbroken phase, an edge-towards localization behavior in the broken phase, and a center-towards localization behavior just at Nth-order EPs. The anti-P T-symmetric array supports also two Nth-order EPs separating an unbroken and a broken phase, which refer however to imaginary and real eigenvalues, respectively. Accordingly, light transfer dynamics in this array exhibits a center-towards localization behavior in the unbroken phase and an origin-centered oscillation behavior in the broken phase. These nontrivial light transfer behaviors and their controlled transitions are not viable for otherwise split lower-order EPs and depend on the underlying SU(2) symmetry of spin-l matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.