Abstract

In a novel application of light torques, we manipulate and control the rotation of nanorods. We apply light torques to 250 nm diameter glass nanorods in a single-beam optical trap. Light-torque operated nanomotors whir at moderate speeds that depend on several factors, including the magnitude of the light torque, the viscosity of the surrounding medium, and the rotation rate of the electric field vector of the linearly polarized trapping light. Two new modes of behavior - rocking motion and saltatory motion - are also described and explained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.