Abstract

Light threshold is suggested as a method for quantifying brush competition in black spruce (Piceamariana (Mill.) B.S.P) plantations and predicting losses in tree growth as measured by the relative growth rate (RGR). The severity of the competing vegetation (expressed in terms of density and height) around 300 planted tree seedlings, and the growth status of the seedlings (expressed in terms of total height and current height growth increment), were analyzed simultaneously with multivariate analysis of variance (MANOVA), with one level of light quantity (photosynthetically active radiation) reaching the upper one-half of the tree seedlings as the predictor variable. This study showed that it is possible to establish a competitive status based on light interception, thus allowing a grouping of seedlings with similar growth characteristics and severity of competition. Canonical analysis showed that 60% of full sunlight reaching the upper one half of spruce seedlings can be defined as a threshold to significantly discriminate between stressed and unstressed tree seedlings, based on the above-mentioned variables and also based on spruce basal stem diameter. For spruce total height, current height increment, and basal stem diameter, significant differences were found between plots above and below this threshold, averaging 18.5, 44.7, and 23.2%, respectively. Measuring the intensity of light reaching the upper one half of the spruce seedlings also significantly explains spruce relative growth rates, expressed in terms of height growth increment and basal stem diameter growth increment over the following two growing seasons. The light threshold used in the MANOVA and the ANOVA showed significant differences between plots above and below the threshold, averaging 70 and 58% for spruce height and basal stem diameter RGRs, respectively. Instead of measuring competing vegetation variables and relative height of a crop species to infer light interception, this study demonstrated that a direct measure of light attenuation at the tree seedling level can be used to assess the competitive status and predict losses in tree growth for the period of time required by the seedlings to emerge from the vegetation cover. Moreover, this study demonstrated that canonical relations, rather than linear relations, explain the pattern of competition for light between young spruce seedlings and brushlike vegetation. The light threshold suggested in this study has potential for assessing interspecific competition problems in young black spruce plantations and is proposed as a tool to support a containment strategy of vegetation management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.