Abstract

Laser processing of gold nanorods (Au NRs) relying on light-matter interaction provides great opportunities in various potential applications. Unveiling the light-induced structure change is a crucial goal in order to control the shape and related properties for practical application. However, the internal atomic structure control of metallic NRs has long been a challenge. Here, the concept of internal atomic structure tailored with light is demonstrated and Au NRs with various internal atomic structures including point defects, twin structures, and polycrystalline nanospheres are fabricated. Experimental characterization and theoretical simulation show that light-induced localized energy deposition and dynamic stresses distribution give rise to atomic structure change. Au NRs with internal defects show enhanced potential to improve activity. The concept of light tailoring of internal atomic structure represents a promising strategy for the rational design of metallic NRs to boost wide applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.