Abstract

Herein, an interesting light-induced self-assembly behavior from non-photoresponsive gold nanoparticles (Au NPs) was reported. Specifically, a pH-responsive amphiphile SPBwas developed that contained a particular phenylboronic acid moiety and showed excellent surface activity at the neutral and basic conditions, thereby stabilizing Au NPs well. Accordingly, the SPB-functionalized Au NPs showed strong pH dependence that there presented the pH-induced reversible self-assembly behavior. Furthermore, the introduction of a small amount of commercially available photoacid generator named diphenyliodonium nitrate (DIN) into the system could endow it with apparent light-switchable self-assembly behavior. The pH- and light-induced self-assembly behaviors of SPB-functionalized Au NPs in the absence and presence of DIN, respectively, were systematically studied by various techniques including UV-vis spectrum, transmission electron microscope, nuclear magnetic resonance, and Fourier transform infrared spectroscopy, which evidently confirmed that the stimuli-responsive self-assembly was controlled by the hydrogen-bonding interactions between phenylboronic acid moieties. Attributing to the light-induced obvious color change from bright-red to deep purple, the system was applied in particle imprinting successfully.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call