Abstract

AbstractOptoelectronic synaptic devices, which combine the functions of photosensitivity and information processing, are essential for the development of artificial visual perception systems. Nevertheless, improving the paired pulse facilitation (PPF) index of optoelectronic synaptic devices, which is an urgent problem in the construction of high‐precision artificial visual perception systems, has received less attention so far. Herein, a light‐stimulated synaptic transistor (LSST) device with an ultra‐high PPF index (≈196%) is presented by introducing an ultra‐thin carrier regulator layer hexagonal boron nitride (h‐BN) into a classic graphene‐based hybrid transistor frame (graphene/CsPbBr3 quantum dots). Crucially, analysis of the rate‐limiting effect of h‐BN on photogenerated carriers reveals the mechanism behind the LSST ultra‐high PPF index. Furthermore, a two‐layer artificial neural network connected by LSST devices demonstrate ≈91.5% recognition accuracy of handwritten digits. This work provides an effective method for constructing artificial visual perception systems using a hybrid transistor frame in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.