Abstract
Reconfiguring the permanent shape of elastomeric microparticles has been impossible due to the incapability of plastic deformation in these materials. To address this limitation, we synthesize the first instance of microparticles comprising a covalent adaptable network (CAN). CANs are cross-linked polymer networks capable of reconfiguring their network topology, enabling stress relaxation and shape changing behaviors, and reversible addition-fragmentation chain transfer (RAFT) is the corresponding dynamic chemistry used in this work to enable CAN-based microparticles. Using nanoimprint lithography to apply controllable deformations we demonstrate that upon light stimulation microparticles are able to reconfigure their shape to permanently fix large aspect ratios and nanoscale surface topographies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.