Abstract

Selection of an efficient light source is fundamental in the development of photodynamic therapy (PDT) protocols. However, few studies provide a comparison of different light sources with regard to phototoxic effects. Here, we compared the cell death induced by photoactivation of chloro-aluminiumphtalocyanine (AlClPc)-loaded human serum albumin nanoparticles under irradiation with different light sources: continuous laser (CL), pulsed laser (PL), and light-emitting diode (LED). Cells were exposed to three different AlClPc concentrations (1, 3, and 5μM) and three different light doses (200, 500, and 700mJ/cm2) for each light source. Cell death and differentiation of apoptosis and necrosis pathway were measured by flow cytometry. CL was the best light source for improving the photodynamic action of AlClPc-loaded albumin nanoparticles in glioblastoma cells and avoiding undesirable side effects, especially at low photosensitizer doses (200mJ/cm2). In addition, apoptosis was the main cell death pathway in all evaluated cases (70% for CL, and greater than 50% for PL and LED). In conclusion, the search for optimal light sources and light/photosensitizer doses is a crucial step in improving PDT outcomes and enhancing the clinical translation of PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.