Abstract

Physiological studies over a long period have shown that light acts to regulate flowering through the three main variables of quality, quantity, and duration. Intensive molecular genetic and genomic studies with the model plant Arabidopsis have given considerable insight into the mechanisms involved, particularly with regard to quality and photoperiod. For photoperiodism light, acting through phytochromes and cryptochromes, the main photomorphogenetic photoreceptors, acts to entrain and interact with a circadian rhythm of CONSTANS (CO) expression leading to transcription of the mobile floral integrator, FLOWERING LOCUS T (FT). The action of phytochromes and cryptochromes in photoperiodism is augmented by ZEITLUPE (ZTL) and FLAVIN-BINDING, KELCH REPEAT, F-BOX (FKF1) acting as accessory photoreceptors on entrainment and interaction, respectively. Light quality acts independently of the circadian system through Phytochromes B, D, and E to regulate FT. Light quantity effects, on the other hand, are still incompletely understood but are likely to be linked either directly or indirectly to patterns of assimilate partitioning and resource utilization within the plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.