Abstract

Abstract Light-sheet fluorescence microscopy (LSFM) is a powerful method for 3D characterization of fluorescent samples. In this contribution we introduce the technique for the application in material analytics by demonstrating the 3D imaging of Ce3+-doped YAG (Y3Al5O12) crystals isolated in a glass matrix. When excited with short wavelength laser radiation, the Ce3+ doping enables fluorescence in the wavelength range between about 450 nm and 680 nm. Since the excitation wavelengths of Ce3+ in the YAG and glass phases of the glass ceramic differ substantially, a suitable laser wavelength can be used to excite only the YAG phase. Thus, an imaging contrast to the surrounding glass matrix is generated. We exploit the crystal dendrites for monitoring the image contrast and improve it by a deconvolution operation of the images. This field of application of LSFM offers great potential, e. g. for fundamental understanding of the microstructuring processes in silicate glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.