Abstract

This paper presents the light-scattering matrices of atmospheric-aggregated hexagonal ice particles that appear in cirrus clouds. The aggregates consist of the same particles with different spatial orientations and numbers of these particles. Two types of particle shapes were studied: (1) hexagonal columns; (2) hexagonal plates. For both shapes, we studied compact and non-compact cases of particle arrangement in aggregates. As a result, four sets of aggregates were made: (1) compact columns; (2) non-compact columns; (3) compact plates; and (4) non-compact plates. Each set consists of eight aggregates with a different number of particles from two to nine. For practical reasons, the bullet-rosette and the aggregate of hexagonal columns with different sizes were also calculated. The light scattering matrices were calculated for the case of arbitrary spatial orientation within the geometrical optics approximation for sets of compact and non-compact aggregates and within the physical optics approximation for two additional aggregates. It was found that the light-scattering matrix elements for aggregates depend on the arrangement of particles they consist of.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.