Abstract

Optical scattering has been widely used for aerosol sizing due to its noninvasive and real-time measurement. However, it is crucial to retrieve the particle size distribution (PSD) of aerosols without prior knowledge of the refractive index. Now, it has been a great challenge to measure the refractive index in situ. In this study, a novel PSD sensing method utilizing the light scattering angular spectrum (LSAS) and machine learning techniques is proposed to address this challenge. The complex nonlinear relationship between LSAS and PSD can be constructed while accounting for the refractive index of aerosols. A miniaturized prototype sensor is designed and tested on different sizes of aerosol samples. The experiment results showed that the maximum Kullback-Leibler divergence (DKL) of PSD is 0.07, which indicates that the sensing method can provide the ability for highly accurate aerosol PSD measurement without requiring prior knowledge of the refractive index. The compacted prototype sensor shows great potential for aerosol analysis in conventional field measurements outside the laboratory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.