Abstract
Retardation induced by media can be used as an image contrast to depict the cumulative birefringent features and local variations of the sample, respectively. It is commonly assumed that the retardation is induced by the light propagation; however, the light scattering would generate the retardation as well. In our work, the scattering-induced retardation as a high-sensitivity image contrast for revealing collagen fibers is presented. First, it is shown that the retardation induced by fiber scattering is equal to π when modeled as cylinders. Using the data for the chicken breast and the palm measured by the polarization-sensitive optical coherence tomography system as an example, the scattering-induced retardation is calculated. The measured value of π is in complete agreement with the theory, and the corresponding retardation per unit distance is two orders of magnitude greater than the light-propagation-induced retardation, demonstrating its predominant role on the overall retardation and providing a possibility for highly sensitive displays. Compared with the accumulated retardation image and the differential retardation image, the scattering-induced retardation images could exhibit sharper fiber structures even in deeper regions. This work might be helpful for the early diagnosis of collagen-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.