Abstract

Numerical solution is presented for light scattering from two kinds of free-standing periodic arrays, that is, disks made of noble-metal and circular apertures perforated in a thin noble-metal sheet. The shapes of them are complementary to each other, and the circular areas are allocated along two orthogonal coordinates with the same periodicity. Using the generalized boundary conditions of the surface impedance type, we formulate the boundary value problem into a set of integral equations for unknown electric and magnetic current densities defined over the circular area. Employment of the method of moments allows us to solve the integral equations and give the expansion coefficients of the current densities, from which we can find reflected, transmitted, and absorbed powers. Dependence of the powers on the array parameters and wavelength is discussed in detail from the viewpoint of grating resonance. Special attention is paid to the extraordinary transmission which occurs in the arrays of apertures of sub-wavelength size by analytical derivation of the quasi-static solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call